Absolute line strengths by analysis of Lu-Fano plots with application to excited state transitions in neon

نویسنده

  • Anthony F. Starace
چکیده

Using energy eigenfunctions obtained by semi-empirical analysis of the Lu-Fano plot of energy level positions and employing the Coulomb approximation of Bates and Damgaard, we calculate absolute line strengths for transitions between the neon two-channel Rydberg series 2p(P3/2,1/2)ns J = 1 and 2p (P3/2,1/2)n′ p J = 0 for n, n’ = 3,4. Each Rydberg series is analyzed separately to obtain a set of five parameters which completely define the energy eigenfunctions for all values of n and n’. Interactions between the ns J = 1 and the nd J = 1 Rydberg series have been ignored. The one-channel neon p and s series are also discussed and line strengths for transition between them presented. Our line strengths for 3s → 3p and 4s → 4p transitions are in excellent agreement with the experimental and theoretical work of others. Our results for 3s → 4p and 4s → 3p transitions are not in agreement with previous work and differ substantially with intermediate coupling theory. For our application to low-lying energy levels in neon we have had to correct the formulas of Lu and Fano by inclusion of the energy-dependent factors of Seaton and by assuming a linear dependence on energy of intrinsic scattering phase shifts. We present all formulas necessary for computing absolute line strengths for transitions between multi-channel Rydberg series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TWO PHOTON TRANSITIONS IN THE OPTOGALVANIC SPECTRUM OF NEON

Seventeen two-photon transitions for neon have been observed in the 580- 635 nm spectral region for use in the spectroscopic study of its higher excited levels, which are not accessible by one-photon absorption. To compare the two and one-photon absorption signals originating from the same lower level, an effort was made to record single-photon optogalvanic spectrum in the available wavele...

متن کامل

A comprehensive set of UV and x-ray radiative transition rates for Fe XVI

Sodium-like Fe XVI is observed in collisionally ionized plasmas such as stellar coronae and coronal line regions of active galactic nuclei including black hole-accretion disc environments. Given its recombination edge from neon-like Fe XVII at ∼25Å, the Fe XVI bound–bound transitions lie in the soft x-ray and EUV (extreme ultraviolet) range. We present a comprehensive set of theoretical transit...

متن کامل

Microscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives

The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...

متن کامل

Dielectronic satellite contributions to Ne VIII and Ne IX K - shell spectra

Ka spectra of heliumlike neon and associated lithiumlike, berylliumlike, and boronlike satellite line emission have been observed with a high-resolution crystal spectrometer on the Lawrence Livermore Electron Beam Ion Trap. The KLL dielectronic recombination satellites were resolved from their He-like parent lines in electron energy space, and their wavelengths and resonance strengths measured....

متن کامل

Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures

Photo-excitation and size-dependent Raman scattering studies on the silicon (Si) nanostructures (NSs) prepared by laser-induced etching are presented here. Asymmetric and red-shifted Raman line-shapes are observed due to photo-excited Fano interaction in the quantum confined nanoparticles. The Fano interaction is observed between photo-excited electronic transitions and discrete phonons in Si N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017